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ESTIMATING CAUSAL EFFECTS OF TREATMENTS IN
RANDOMIZED AND NONRANDOMIZED STUDIES

DONALD B. RUBIN®

Educational Testing Service, Princeton, New Jersey

A discussion of matching, randomization, random sampling, and other
methods of controlling extraneous variation is presented. The objective
is to specify the benefits of randomization in estimating causal effects
of treatments. The basic conclusion is that randomization should be
employed whenever possible but that the use of carefully controlled
nonrandomized data to estimate causal effects is a reasonable and nec-

essary procedure in many cases.

Recent psychological and educational
literature has included extensive criticism
of the use of nonrandomized studies to
estimate causal effects of treatments (e.g.,
Campbell & Erlebacher, 1970). The im-
plication in much of this literature is that
only properly randomized experiments can
lead to useful estimates of causal effects. If
taken as applying to all fields of study, this
position is untenable. Since the extensive
use of randomized experiments is limited to
the last half century,® and in fact is not
used in much scientific investigation today,!
one is led to the conclusion that most
scientific “truths” have been established
without using randomized experiments. In
addition, most of us successfully determine
the causal effects of many of our everyday
actions, even interpersonal behaviors, with-
out the benefit of randomization.

Even if the position that causal effects of
treatments can only be well established from
randomized experiments is taken as ap-
plying only to the social scicnces in which
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there are currently few well-established
causal relationships, its implication—to
ignore existing observational data—may be
counter-productive. Often the only im-
mediately available data are observational
(nonrandomized) and either (a) the cost of
performing the equivalent randomized ex-
periment to test all treatments is prohibitive
(e.g., 100 reading programs under study);
(b) there are ethical reasons why the treat-
ments cannot be randomly assigned (e.g.,
estimating the effects of heroin addiction on
intellectual functioning); or (¢} estimates
based on results of experiments would be
delayed many years (c.g., effect of child-
hood intake of cholesterol on longevity).
In cases such as these, it seems more reason-
able to try to estimate the effects of the
treatments from nonrandomized studies
than to ignore these data and dream of the
ideal experiment or make ‘‘armchair”
decisions without the benefit of data analy-
sis. Using the indications from nonran-
domized studies, one can, if necessary,
initiate randomized experiments for those
treatments that require better estimates or
that look most promising,

The position here is not that randomiza-
tion is overused. On the contrary, given a
choice between the data from a randomized
experiment and an cquivalent nonran-
domized study, one should choose the data
from the experiment, especially in the social
sciences where much of the variability is
often unassigned to particular causes. How-
ever, we will develop the position that non-
randomized studies as well as randomized
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experiments can be useful in estimating
causal treatment effects.

In order to avoid unnecessary complica-
tion, we will restrict discussion to the very
simple study consisting of 2N units (e.g.,
subjects), half having been exposed to an
experimental (E) treatment (e.g., a com-
pensatory reading program) and the other
half having been exposed to a control (C)
treatment (e.g., a regular reading program).
If Treatments E and C were assigned to the
2N units randomly, that is, using some
mechanism that assured each unit was
equally likely to be exposed to E as to C,
then the study is called a randomized ex-
periment or more simply an experiment;
otherwise, the study is called a nonran-
domized study, a quasi-experiment, or an
observational study. The objective is to
determine for some population of units (e.g.,
underprivileged sixth-grade children) the
“typical” causal effect of the E versus C
treatment on a dependent Variable Y,
where Y could be dichotomous (e.g., suc-
cess—failure) or more continuous (e.g., score
on a given reading test). The central ques-
tion concerns the benefits of randomiza-
tion in determining the causal effect of the
E versus C treatment on Y.

DEFiNING THE CausaL ErrFEcT oF THE E
VERSUS C TREATMENT

Intuitively, the causal effect of one treat-
ment, E, over another, C, for a particular
unit and an interval of time from t to ty is
the difference between what would have
happened at time te if the unit had been
exposed to E initiated at t; and what would
have happened at t; if the unit had been
exposed to C initiated at t;: “If an hour ago
I had taken two agpirins instead of just a
glass of water, my headache would now be
gone,” or “Because an hour ago I took two
aspirins instead of just a glass of water, my
headache is now gone.” Our definition of the
causal effect of the E versus C treatment will
reflect this intuitive meaning.

First define a trial to be a unit and an
associated pair of times, t; and t,, where
t, denotes the time of initiation of a treat-
ment and t: denotes the time of measure-
ment of a dependent variable, Y, where
t1 < ta. We restrict our attention to Treat-
ments E and C that could be randomly
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agsigned; thus, we assume (a) a time of
initiation of treatment can be ascertained
for each unit exposed to E or C and (b)
E and C are exclusive of each other in the
sense, that a trial cannot simultaneously
be an E trial and a C trial (ie., if E is
defined to be C plus some action, the
initiation of both is the initiation of E; if E
and C are alternative actions, the initiation
of both E and C is the initiation of neither
of these but rather of a third treatment, E
+ C).

Now define the causal effect of the E
versus C treatment on Y for a particular
trial (i.e., a particular unit and associated
times 1, te) as follows:

Let y(E) be the value of Y measured® at
t; on the unit, given that the unit re-
ceived the experimental Treatment E
initiated at t;

Let y(C) be the value of Y measured at
t, on the unit given that the unit re-
ceived the control Treatment C initiated
at tl,

Then y(E) — y(C) is the causal effect of
the E versus C treatment on Y for that
trial, that is, for that particular unit and
the times ts, te.

For example, assume that the unit is a
particular child, the experimental treat-
ment is an enriched reading program, and
the control treatment is a regular reading
program. Suppose that if the child were
given the enriched program initiated at time

® The measured value of Y stated with reference
to time ts is considered the “true” value of Y at t..
This position can be justified by defining Y by a
measuring instrument that always yields the mea-
sured Y (eg., Y is the score on & particular 1Q
test as recorded by the subject’s teacher). Since
an “error” in the measured Y can only be detected
by a “better” measuring instrument (e.g., a
machine-produced score on that same IQ test),
the values of a “truer” score can be viewed as the
values of a different dependent variable. Clearly,
any study is more meaningful to the investigator
if the dependent variable better reflects underlying
concepts he feels are important (e.g., is more ac-
curate) but that does not imply he must con-
gider errors about some unmeasurable “true score.”
For the reader who prefers the concept of such
errors of measurement, he may consider the follow-
ing discussion to assume negligible “technical
errors” so that Y is essentially the “true” Y
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t1, 10 days later at time ty he would have a
score of 38 items correct on a reading test;
and suppose that if the child instead were
given the regular program initiated at time
t1, at time t, he would score 34 items cor-
rect. Then the causal effect on the reading
test for that trial (that child and times t;,
t;) of the enriched program versus the
regular program is 38 — 34 = 4 more items
correct.

The problem in measuring y(E) — y(C)
is that we can never observe both y(E) and
y(C) since we cannot return to time t; to
give the other treatment. We may have the
same unit measured on both treatments in
two trials (a repeated measure design), but
since there may exist carryover effects (e.g.,
the effect of the first treatment wears off
slowly) or general time trends (e.g., as the
child ages, his learning ability increases),
we cannot be certain that the unit’s re-
sponses would be identical at both times.

Assume now that there are M trials for
which we want the ‘“‘typical” causal effect.
For simplicity of exposition, assume that
each trial is associated with a different unit
and expand the above notation by adding
the subscript j to denote the jt» trial (j =
d, 2, -+, M); thus y;(E) — y;(C) is the
causal effect of the E versus C treatment
for the jtb trial, that is, the j** unit and the
associated times of initiation of treatment,
t1;, and measurement of Y, ty;.

An obvious definition of the ‘‘typical”
causal effect of the E versus C treatment
for the M trials is the average (mean) causal
effect for the M trials:

1 M

M & ly;(E) — y;(C)I.
Even though other definitions of typical
are interesting,® they lead to more compli-

% Notice that if all but one of the individual
causal effects are small and that one is very large,
the average causal effect may be substantially
larger than all but one of the individual causal
effects and thus not very “typical.” Other possible
definitions of the typical causal effects for the M
trials are the median causal effect (the median of
the individual causal effects) or the midmean
causal effect (the average of the middle half of
the individual causal effects). If the individual
causal effects, y;(E) — y;(C), are approximately
symmetrically distributed about a central value,
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cations when discussing properties of esti-
mates under randomization. Hence we
assume the average causal effect is the de-
sired typical causal effect for the M trials
and proceed to the problem of its estima-
tion given the obvious constraint that we
can never actually measure both y;(E)
and y;(C) for any trial.

RANDOMIZATION, MATCHING, AND
EsTIMATING THE TyPICAL
CausaL EFFecT IN THE
2N TriaL Stupy

For now assume that the objective is to
estimate the typical causal effect only for
the 2N trials in the study. Of course, in
order for the results of a study to be of much
interest, we must be able to generalize to
units and associated times other than those
in the study. However, the issue of gen-
eralizing results to other trials is discussed
separately from the issue of estimating the
typical causal effect for the trials under
study. Also, for now we only consider the
simple and standard estimate of the typical
causal effect of E versus C: the average Y
difference between those units who re-
ceived E and those units who received C.
After considering this estimate when there
are only two trials in the study and then
when there are 2N (N > 1) trials in the
study, we will more formally discuss two
benefits of randomization.

Two-Trial Study

Suppose there are two trials under study,
one trial having a unit exposed to E and the
other having a unit cxposed to C. The
typical causal effect for the two trials is

% niE) — yi(C) + yo(E) — y:(C)]. [1]

The cstimate of this quantity from the
study, the difference between the measured
Y for the unit who received E and the
measured Y for the unit who received C, is
either

yi(E) — y(0) (2]
or

y2(E) — y1(C) 3]

sensible definitions of “typical” will yield similar
values.
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depending upon which unit was assigned E.
Neither Equation 2 nor Equation 3 is neces-
sarily close to Equation 1 or to the causal
effect for either unit

yu(E) — yi(C) (4]

or

y2(E) — y2(C), (5]

even if these individual causal effects are
equal. If the Treatments E and C were
randomly assigned to units, we are equally
likely to have observed the difference in
Equation 2 as that in Equation 3, so that
the average or “‘expected” difference in Y
between experimental and control units is
the average of Equations 2 and 3,

Y% (E) — y(C)] +- 14 [n:(E) — yo(C)]

which equals Equation 1, the typical causal
effect for the two trials. For this reason, if
the treatments are randomly assigned, the
difference in Y between the experimental
and control units is called an ‘“unbiased”
estimate of the desired typical causal effect.

Now suppose that the two units are very
similar in the way they respond to the E
and C treatments at the times of their trials.
By this we mean that on the basis of
“extra information,” we know yi(E) is about
equal to y.(E) and y.(C) is about equal to
v2(C); that is, the two trials are closely
“matched” with respect to the effects of the
two treatments. It then follows that Equa-
tion 2 is about equal to Equation 3, and
both are about equal to the desired typical
causal effect in Equation 1. In fact, if the
two units react identically in their trials,
Equation 5 = Equation 4 = Equation 3 =
Equation 2 = Equation 1, and randomiza-
tion is absolutely irrevelant. Clearly, having
closely “matched” trials increases the
closeness of the caleulated experimental
minus control difference to the typical causal
effect for the two trials, while random as-
signment of treatments does not improve
that estimate.

Although two-trial studies are almost un-
heard of in the behavioral sciences, they are
not uncommon in the physical sciences. For
example, when comparing the heat ex-
pansion rates (per hour) of a metal alloy in
oxygen and nitrogen, an investigator might

691

use 2 one-foot lengths of the alloy. Because
the lengths of alloy are so closely matched
before being exposed to the treatment (al-
most identical compositions and dimen-
sions), the units should respond almost
identically to the treatments even when
initiated at different times, and thus the
calculated experimental (oxygen) minus
control (nitrogen) difference should be an
excellent estimate of the typical causal
effect, Equation 1.

A skeptical observer, however, could al-
ways claim that the experimental minus
control difference is not a good estimate of
the typical causal effect of the E versus C
treatment because the two units were not
absolutely identical prior to the application
of the treatments. For example, he could
claim that the length of alloy molded first
would expand more rapidly. Hence, he
might argue that what was meagsured was
really the effect of the difference in order of
manufacture, not the causal effect of the
oXygen versus nitrogen treatment. Since
units are never absolutely identical before
the application of treatments, this kind of
argument, whether “sensible’” or not, can
always be made. Nevertheless, if the two
trials are closely matched with respect to
the expected effects of the treatments, that
is, if (a) the two units are matched prior to
the initiation of treatments on all variables
thought to be important in the sense that
they causally affect Y and (b) the possible
effect of different times of initiation of
treatment and measurement of Y are con-
trolled, then the investigator can be con-
fident that he is in fact measuring the
causal effect of the E versus C treatment
for those two trials. This kind of confidence
is much easier to generate in the physical
sciences where there are models that suc-
cessfully assign most variability to specific
causes than in the social sciences where often
important causal variables have not been
identified.

Another source of confidence that the ex-
perimental minus control difference is a good
estimate of the causal effect of E versus C is
replication: Are similar results obtained
under similar conditions? One type of
replication is the inclusion of more than two
trials in the study.
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The 2N Trial Study

Suppose there are 2N trials (N > 1) in
the study, half with N units having received
the E treatment and the other half with N
units having received the C treatment. The
immediate objective is to find the typical
causal effect of the E versus C treatment on
Y for the 2N trials, say r:

1 2N

= oN ;=Zl ly;(E) — y; (C)].

Let Sg denote the set of indices of the E
trials and Sg denote the set of indices
of the Ctrials g USc=1{i=1,2, .-,
2N}). Then the difference between the
average observed Y in the E trials and the
average observed Y in the C trials can be
expressed as

T

Fa = 1N 2. vi(B) — 1 PIRA(ON
je8g ieSc

where D .jg, and i indicate, respec-
tively, summation over all indices in Sg
(i.e., all E trials) and over all indices in Sg
(i.e., all C trials). We now consider how
close this estimate §q4 is to the typical causal
effect 7 and what advantage there might
be if we knew the treatments were randomly
assigned.

First, assume that for each unit receiving
E there is a unit receiving C, and the two
units react identically at the times of their
trials; that is, the 2N trials are actually N
perfectly matched pairs. We now show that
the estimate §q4 in this case equals 7. ¥4 can
be expressed as the average experimental
minus control (E — C) difference across
the N matched trials. Since the (E — C)
difference in each matched pair of trials is
the typical causal effect for both trials of
that pair, the average of those differences is
the typical causal effect for all N pairs and
thus all 2N trials. This result holds whether
the treatments were randomly assigned or
not. In fact, if one had N identically matched
pairs, a “thoughtless” random assignment
could be worse than a nonrandom assign-
ment of K to one member of the pair and C
to the other. By ‘“‘thoughtless” we mean
some random assignment that does not
agsure that the members of cach matehed
pair get different treatments—picking the
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N indices to receive E “from a hat” con-
taining the numbers 1 through 2N rather
than tossing a fair coin for each matched
pair to see which unit is to receive E.

In practice, of course, we never have
exactly matched trials, However, if matched
pairs of trials are very similar in the sense
that prior to the initiation of treatments the
investigator has controlled those variables
that might appreciably affect Y, then 4
should be close to 7. If, in addition, the
estimated causal effect is replicable in the
sense that the N individual estimated causal
effects for each matched pair are very simi-
lar, the investigator might feel even more
confident that he is in fact estimating the
typical causal effect for the 2N trials (e.g.,
2N children from the same school matched
by sex and initial reading score into N pairs,
with the same observed E — C difference
in final score in each matched pair). Simi-
larly, if the trials are not pair-matched but
are all similar (e.g., all children are males
from the same school with similar pretest
scores) and if we observe that all y;(E)
jeSg are about equal and all y;(C) jeSq are
about equal, the investigator would also
feel confident that he is in fact estimating
the typical causal effect for the 2N trials.

Nevertheless, it is obvious that if treat-
ments were systematically assigned to units,
the addition of replication evidence cannot
dissuade the critic who believes the effect
being measured is due to a variable used to
assign treatments (e.g., in the reading study,
if more active children always received the
enriched program, or in the heat-expansion
study, if the first molded alloy was always
measured in oxygen). If treatments were
randomly assigned, all systematic sources
of bias would be made random, and thus it
would be unlikely, especially if N is large,
that almost all E trials would be with the
more active children or the first molded
alloy. Hence, any effect of that wvariable
would be at least partially balanced in the
sense of systematically favoring neither the
E treatment nor the C treatment over the
2N trials. In addition, using the replications,
there could be evidence to refute the skep-
tic’s claim of the importance of that variable
(e.g., in each matched trial we get about the
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same estimate whether the more active child
gets E or C). Of course, if we knew the
skeptic’s claim beforehand, a specific control
of this additional variable would be more
advisable than relying on randomization
(e.g., in a random half of the matched trials
assign E to the more active child, and in
the other half assign C to the more active
child, or include the child’s activity as a
matching variable).

It is important to realize, however, that
whether treatments are randomly assigned
or not, no matter how carefully matched
the trials, and no matter how large N, a
skeptical observer could always eventually
find some variable that systematically
differs in the E trials and C trials (e.g.,
length of longest hair on the child) and
claim that §4 estimates the effect of this
variable rather than r, the causal effect of
the E versus C treatment. Within the experi-
ment there can be no refutation of this
claim; only a logical argument explaining
that the variable cannot causally affect the
dependent variable or additional data out-
gide the study can be used to counter it.

Two ForMAL BENEFITS OF
RANDOMIZATION

If randomization can never assure us that
we are correctly estimating the causal effect
of E versus C for the 2N trials under study,
what are the benefits of randomization
besides the intuitive ones that follow from
making all systematic sources of bias into
random ones? Formally, randomization
provides a mechanism to derive probabilistic
properties of estimates without making
further assumptions. We will consider two
such properties that are important;

1. The average E — C difference is an
“unbiased” estimate of 7, the typical
causal effect for the 2N trials.

2. Precise probabilistic statements can
be made indicating how unusual the ob-
served E — C difference, §4, would be
under specific hypothesized causal effects.

More advanced discussion of the formal
benefits of randomization may be found in
Sheffé (1959) and Kempthorne (1952).
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Unbiased Estimation over the Randomization
Set

We begin by defining the “randomization
set” to be the set of r allocations that
were equally likely to be observed given
the randomization plan. For example,
if the treatments were randomly assigned
to trials with no restrictions (the completely
randomized experiment, Cochran & Cox,
1957), each one of the (2]{,\[>
allocations of N trials to E and N trials to C
was equally likely to be the observed alloca-
tion. Thus, the collection of all of these
. <2N

N
randomization set for this completely ran-
domized experiment. If the treatments were
assigned randomly within matched pairs
(the randomized blocks experiment, Cochran
& Cox, 1957), any of the 2# allocations,
with each member of the pair receiving a
different treatment, was equally likely to be
the observed one. Hence, for the experiment
with randomization done within matched
pairs, the collection of these r = 2¥ equally
likely allocations is known as the randomiza-
tion set.

For each of the r possible allocations in
the randomization set, there is a corre-
sponding average E — C difference that
would have been calculated had that alloca-
tion been chosen. If the expectation (i.e.,
average) of these r possible average differ-
ences equals 7, the average E — C differ-
ence is called unbiased over the randomiza-
tion set for estimating . We now show that
given randomly assigned treatments, the
average E — C difference is an unbiased
estimate of r, the typical causal effect for
the 2N trials.

By the definition of random assignment,
each trial is equally likely to be an E trial
as a C trial. Hence, the contribution of the
jth trial j = 1, -+, 2N) to the average
E — C difference in half of the r alloca-
tions in the randomization set is y;(E)/N
and in the other half is — y;(C)/N. The
expected contribution of the j* trial to the
average E — C differenceis therefore

Yelys(E)/N] + 34 [— yi(C)/NL.

possible

allocations is known as the
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Summing over all 2N trials we have, the
expectation of the average E — C difference
over the r allocations in the randomization
set is

1 2N
W,; [y;(E) — y:(C)],

which is the typical causal effect for the 2N
trials, 7.

Although the unbiasedness of the E — C
difference is appealing in the sense that it
indicates that we are tending to estimate
T, its impact is not immediately overwhelm-
ing: the one E — C difference we have
observed, $4, may or may not be close to
r. In a vague sense we may believe 4
should be close to r because the unbiased-
ness indicates that ‘“on the average” the
E — C difference is 7, but this belief may
be tempered when other properties of the
estimate are revealed; for example without
additional constraints on the symmetry of
effects, the average E — C difference is not
equally likely to be above 7 asbelow it.

In addition, after observing the values
of some important unmatched variable, we
may no longer believe 74 tends to estimate
7. For example, suppose in the study of
reading programs, initial reading score is not
a matching variable, and after the experi-
ment is complete we find that the average
initial score for the children exposed to E
was higher than for those exposed to C.
Clearly we would now believe that ¥4 proba-
bly overestimates r even if treatments were
randomly assigned.

In sum, the unbiasedness of the E — C
difference for r follows from the random
assignment of treatments; it is a desirable
property because it indicates that “on the
average” we tend to estimate the correct
quantity, but it hardly solves the problem
of estimating the typical causal effect, As
yet we have no indication whether to believe
¥a is close to = nor to any ability to adjust
for important information we may possess.

Probabilistic Statements from the
Randomization Set

A second formal advantage of randomiza-
tion is that it provides a mechanism for
making precise probabilistic statements
indicating how unusual the observed E — C
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difference, ¥4, would be under specific
hypotheses. Suppose that the investigator
hypothesizes exactly what the individual
causal effects are for each of the 2N trials
and these hypothesized values are 7;, j =

1, -+, 2N. The hypothesized typical causal
effect for the 2N trials is thus

. 1 &

T = _2—_N ; Tj.

Having the 7; and the observed y;(E), jeSg
and y;(C), jeS¢, we can calculate hypothe-
sized values, say 7;(C) and ¥;(E), for all of
the 2N trials. For jeSg, yi(E) is observed
and y;(C) is unobserved; hence, for these
trials 7;(E) = y;i(E) and §,(C) = y;(E) —
#;. For je3q, yi(C) is observed and y;(E)
is unobserved; hence, for these trials §;(C) =
yi(C) and §;(E) = yi(C) + 7;. Thus, we
can calculate hypothesized ¥;(E) and #;(C)
for all 2N trials, and using these, we can
calculate an hypothesized average E — C
difference for each of the r allocations of the
2N trials in the randomization set.

Suppose that we calculate the r hypothe-
sized average E — C differences and list
them from high to low, noting which
E — C difference corresponds to the Sg, S
allocation we have actually observed. This
difference, V4, is the only one which does not
use the hypothesized 7;. If treatments were
assigned completely at random to the trials
and the hypothesized #; are correct, any one

of the r = (%{,V) differences was equally

likely to be the observed one; similarly, if
treatments were randomly assigned within
matched pairs, each of the r = 2~ differences
with each member of a matched pair getting
a different treatment was equally likely to
be the observed one. Intuitively, if the
hypothesized 7; are essentially correct, we
would expect the observed difference yq to
be rather typical of the (r — 1) other differ-
ences that were equally likely to be observed;
that is, ¥4 should be near the center of the
distribution of the r E — C differences.
1f the observed difference is in the tail of
distribution and therefore not typical of
the r differences, we might doubt the cor-
rectness of the hypothesized 7;.

Since the average of the r E — C dif-
ferences is the hypothesized typical causal
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effect, 7, and the r allocations are equally
likely, we can make the following probabilis-
tic statement:

Under the hypothesis that the causal effects are
given by the #;, ] = 1,-++, 2N, the probability that
we would observe an average E — C difference
that is as far or farther from # than the one we
have observed is m/r where m is the number of
allocations in the randomization set that yield
E — C differences that are as far or farther from
7 than ¥q.

If this probability, called the ‘“‘significance
level” for the hypothesized 7;, is very small,
we either must admit that the observed
value is unusual in the sense that it is in the
tail of the distribution of the equally likely
differences, or we must reject the plausi-
bility of the hypothesized 7;.

The most common hypothesis for which a
significance level is calculated is that the
E versus C treatment has no effect on Y
whatsoever (i.e., #; = 0). Other common
hypotheses assume that the effect of the
E versus C treatment on Y is a nonzero
constant (i.e., 7; = 7o) for all trials.”

The ability to make precise probabilistie
statements about the observed §4 under
various hypotheses without additional as-
sumptions is a tremendous benefit of ran-
domization especially since Fa tends to
estimate . However, one must realize that
these simple probabilistic statements refer
only to the 2N trials used in the study and
do not reflect additional information (i.e.,
other variables) that we may also have
measured.

PRESENTING THE RESULTS OF AN
ExPERIMENT AS BEING OF
GENERAL INTEREST

Before presenting the results of an experi-
ment as being relevant, an investigator
should believe that he has measured the

"These hypotheses for a constant effect can be
used to form “confidence limits” for 7. Given
that the r; are constant, the set of all hypothesized
7o such that the associated significance level is
greater than or equal to « = m/r form a (1 — «)
confidence interval for =: of the r such (1 — ) con-
fidence intervals one could have constructed (one
for each of the r allocations in the randomization
set), (1 — &) = r — m of them include the true
value of = assuming all r; = 7. See Lehmann (1959,
p. 59) for the proof.
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causal effect of the E versus C treatment
and not the effect of some extraneous varia-
ble. Also, he should believe that the result is
applicable to a population of trials besides
the 2N in the experiment.

Considering Additional Variables

As indicated previously, the investigator
should be prepared to consider the possible
effect of other variables besides those explicit
in the experiment. Often additional variables
will be ones that the investigator considers
relevant because they may causally affect Y;
therefore, he may want to adjust the esti-
mate ¥4 and significance levels of hypotheses
to reflect the values of these variables in
the study. At times the variables will be
ones which cannot causally affect Y even
though in the study they may be correlated
with the observed values of Y. An investiga-
tor who refuses to consider any additional
variables is in fact saying that he does not
care if ¥4 is a bad estimate of the typical
causal effect of the E versus C treatment
but instead is satisfied with mathematical
properties (i.e., unbiasedness) of the process
by which he calculated it.

Consider first the case of an obviously
important variable. As an example, suppose
in the reading study, with programs ran-
domly assigned, we found that the average
E — C difference in final score was four
items correct and that under the hypothesis
of no effects the significance level was .01;
also assume that initial score was not a
matehing variable and in fact the difference
in initial score was also four items correct.
Admittedly, this is probably a rare event
given the randomization, but rare events do
happen rarely. Given that it did happen,
we would indeed be foolish to believe 74 = 4
items is a good estimate of r and/or the
implausibility of the hypothesis of no treat-
ment effects indicated by the .01 significance
level. Rather, it would seem more sensible
to believe that §4 overestimates » and
significance levels underestimate the plausi-
bility of hypotheses that suggest zero or
negative values for 7.

A commonly used and obvious correction
is to calculate the average E — C difference
in gain score rather than final score. That
is, for each trial there is a ‘“pretest” score
which was measured before the initiation of
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treatments, and the gain score for each trial
is the final score minus the pretest score.
More generally we will speak of a “prior”
score or ‘“prior” variable which would have
the same value, xj, whether the jt® unit
received E or C. It then follows given ran-
dom assignment of treatments that the
adjusted estimate (e.g., gain score)

L 2 yiE) — x5 - 1 > Iy (C) — xj]

jeSE N jeS¢

remains an unbiased estimate of 7 over
the randomization set: Each prior score
appears in half of the equally likely allo-
cations as x;/N and the other half as
— x;/N; hence, averaged over all alloca-
tions, the j*® prior score has no effect.® But
this result holds for any set of prior scores
X;, ] = 1, -+, 2N, whether sensible or not.
For example, in an experiment evaluating a
compensatory reading program, with Y
being the final score on a reading test, the
prior variable ‘pretest reading score” or
perhaps “IQ" properly scaled makes sense
but “height in millimeters” does not. Also,
why not use the prior variable “one half
pretest score?”’

Clearly, in order to make an intelligent
adjustment for extra information, we cannot
be guided solely by the concept of unbiased-
ness over the randomization set. We need
some model for the effect of prior variables
in order to use their values in an intelligent
manner. For example, if the final score
typically would equal the initial score if there
were no E — C treatment effect (as with the
length of the alloys in the heat expansion
experiment), the gain score is perfectly
reasonable. In the physical sciences, more
complex models representing generally ac-
cepted functional relationships are often
used; however, in the social sciences there
are rarely such accepted relationships upon
which to rely. What then does the investiga-
tor do in order to adjust intelligently the
final reading scores for the subjects’ varying
1Qs, grade levels, socioeconomic status, and

51f the prior score could vary depending on
whether the unit received E or C (ie, it is a
variable measured after the initiation of the treat-
ment), we would have no assurance that the ad-
justed E — C difference is an unbiased estimate
over the randomization set.
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so on? Apparently, he must be willing to
make some assumptions about the func-
tional form of the causal effect of these
other variables on Y. If he assumes, perhaps
based on indications in previous data, some
“known’ function for x; (e.g., in the com-
pensatory reading program example, suppose
X; equals [.01 X IQJ X pretest X [per-
centile of family incomel), so that x; is
the same whether the jt* unit received E or
C, from the previous discussion the average
E — C difference in adjusted scores remains
an unbiased estimate of 7. If the investiga-
tor assumes a model whose parameters are
unknown and estimates these parameters
by some method from the data, in general
the average E — C difference in adjusted
scores is no longer unbiased over the ran-
domization set because the adjustment for
the jt* trial depends on which trials received
E and which received C (e.g., in the analysis
of covariance, the estimated regression
coeflicients in general vary over the r
allocations in the randomization set).
Hence, forming an intelligent adjusted
estimate may not be simple even in a ran-
domized experiment.

Significance levels for any adjusted esti-
mate can be found by calculating the ad-
justed estimate rather than the simple
E — C difference for each of the equally
likely alloeations in the randomization set.
However, if the adjusted estimate does not
tend to estimate 7 in a sensible manner, the
resulting significance level may not be of
much interest.

Now consider a variable that is brought
to the investigator’s attention, but he feels
it cannot causally affect Y (e.g., in the
compensatory reading example, age of oldest
living relative). Eventually a skeptic can
find such a variable that systematically
differs in the E trials and the C trials even
in the best of experiments. Considering only
that variable, it is indeed unlikely given
randomization that there would be such
discrepancy between its values in E trials
and C trials, but its occurrence cannot be
denied. If the skeptic adjusts ¥4 by using a
standard model (e.g., covariance), the
adjusted estimate and related significance
levels may then give misleading results
(e.g., zero estimate of 7, hypothesis that
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all causal effects are zero, 7; = 0, is very
plausible). In fact, using such models one
can obtain any estimated causal effect
desired by searching for and finding a prior
variable or combination of prior variables
that yield the desired result. Such a search
should be more difficult given that ran-
domization was performed, but even with
randomized data the investigator must be
prepared to ignore variables that he feels
cannot causally affect Y. On the other
hand, he may want to adjust for such a
variable if he feels it is a surrogate for an
unmeasured variable that can causally
affect Y (e.g., age of oldest living relative
is a surrogate for mental stability of the
family in the compensatory reading ex-
ample).

The point of this discussion is that when
trying to estimate the typical causal effect in
the 2N trial experiment, handling additional
variables may not be trivial without a well-
developed causal model that will properly
adjust for those prior variables that causally
affect Y and ignore other variables that do
not, causally affect Y even if they are highly
correlated with the observed values of Y.
Without such a model, the investigator must
be prepared to ignore some variables he
feels cannot causally affect Y and use a
somewhat arbitrary model to adjust for
those variables he feels are important. An
example which demonstrates that it is not
always simple to interpret significant results
in a randomized experiment with many prior
variables recorded is the recent controversy
over the utility of oral-diabetic drugs.®

Generalizing Results to Other Trials

In order to believe that the results of an
experiment are of practical interest, we
generally must believe that the 2N trials
in the study are representative of a popula-
tion of other future trials. For example, if
the experimental treatment is a compensa-
tory reading program and the trials are
composed of sixth-grade school -children
with treatments initiated in fall 1970 and Y
measured in spring 1971, the results are of:
little interest unless we believe they tell us
something about future sixth graders who

*See for example Schor (1971) and Cornfield
(1971).
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might be exposed to this compensatory
reading program.

For simplicity, assume the 2N trials in
the study are a simple random sample from
a “‘target population” of M trials to which
we want to generalize the results; by simple
random sample we mean that each ‘of the

ZAJIV ways of choosing the 2N trials is
equally likely to be selected. If T is the
typical (average) causal effect for all M
trials, it then follows given random assign-
ment of treatments that the average E — C
difference for the 2N trials used is an un-
biagsed estimate of T over the random
sampling plan and over the randomization
set. In other words, in each of the r X

(é‘J[V) ways of choosing 2N trials from M

trials and then randomly assigning N trials
to E and N trials to C, there is a calculated
average E — C difference, and the average

of these r X (2]5{,) differences is T: Be-

cause of the randomization and random
sampling, each trial is equally likely to be
an E trial as a C trial and thus contributes
yi(E)/N to the E — C difference as often
a8 it contributes — y;(C)/N. It also follows
that under a hypothesized set of causal
effects, 75, j = 1, -+, M, the significance
level (the probability that we would observe
a difference as large as or larger than ¥a),
given that we have sampled the 2N trials
in the study, is m/r where m is the number
of allocations in the randomization set that
yield estimates as far or farther from 7 than
§a.10

If we let M grow to infinity (a reasonable
assumption in many experiments when the
population to which we want to generalize
results is essentially unlimited, for example,
all future sixth-grade students), some addi-
tional probabilistic results follow. For ex-
ample, the usual covariance adjusted esti-
mate is an unbiased estimate of T (not
necessarily 7) over the random sampling
plan and the randomization set, but whether
the adjustment actually adjusts for the

® Even though we have hypothesized r; for all
trials, we cannot calculate hypothesized ¥;(E) and
#,(C) for the unsampled trials, and thus the proba-
bilistic statement is conditional on the observed
trials,
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additional variables(s) still depends on the
appropriateness of the underlying linear
model.

Hence, given random sampling of trials,
the ability to generalize results to other
trials seems relatively straightforward proba-
bilistically. However, most experiments are
designed to be generalized to futwre trials;
we never have a random sample of trials
from the future but at best a random
sample from the present; in fact, experi-
ments are usually conducted in constrained,
atypical environments and within a re-
stricted period of time. Thus, in order to
generalize the results of any experiment to
future trials of interest, we minimally must
believe that there is a similarity of effects
across time and more often must believe that
the trials in the study are “representative”
of the population of trials, This step of faith
may be called making an assumption of
“subjective random sampling” in order to
assert such properties as (a) 4 (or 4 ad-
justed) tends to estimate the typical causal
effect T and (b) the plausibility of hypothe-
sized 75, j = 1, --- , M, is given by the usual
conditional significance level.

Even though the trials in an experiment
are often not very representative of the
trials of interest, investigators do make and
must be willing to make this assumption of
subjective random sampling in order to
believe their results are useful. When in-
vestigators carefully describe their sample of
trials and the ways in which they may differ
from those in the target population, this
tacit assumption of subjective random
sampling seems perfectly reasonable. If
there is an important variable that differs
between the sample of trials and the popula-
tion of trials, an attempt to adjust the
estimate based on the same kinds of models
discussed previously is quite appropriate.!

PRESENTING THE RESULTS OF AN
NONRANDOMIZED STUDY AS
Being oF GENERAL
INTEREST

The same two issues previously discussed
as arising when presenting the results of an

1 See Cochran (1963) on regression and ratio
adjustments. These are appropriate whether the
sample is actually random or not.
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experiment also arise when presenting the
results of a nonrandomized study as being
relevant. However, the first issue, the effect
of variables not explicitly controlled, is
usually more serious in nonrandomized than
in randomized studies, while the second,
the applicability of the results to a popula-
tion of interest, is often more serious in
randomized than in nonrandomized studies.

Effect of Variables Not Explicitly Controlled

In order to believe that j4 in & nonran-
domized study is a good estimate of 7,
the typical causal effect for the 2N trials in
the study, we must believe that there are no
extraneous variables that affect Y and
systematically differ in the E and C groups;
but we have to believe this even in a ran-
domized experiment. The primary difference
is that without randomization there is often
a strong suspicion that there are such varia-
bles, while with randomization such suspi-
cions are generally not as strong.

Consider a carefully controlled nonran-
domized study—a study in which there are
no obviously important prior variables that
systematically differ in the E trials and the
C trials. In such a study, there is a real
sense in which a claim of “‘subjective ran-
domization” can be made. For example, if
the study was composed of carefully
matched pairs of trials, there might be a
very defensible belief that within each
matched pair each unit was equally likely to
receive E as C in the sense that if you were
shown the units without being told which
received E, only half the time would you
correctly guess which received E.** Under
this assumption of subjective randomiza-
tion, the usual estimates and significance
levels can be used as if the study had been
randomized; this procedure is analogous to
assuming subjective random sampling in
order to make inferences about a target
population. Until an obviously important
variable is found that systematically differs
in the E and C trials, the belief in subjective
randomization is well founded.

Now consider a nonrandomized study in

2 Perhaps this is all that is meant by “ran-
domization” to some Bayesians under any circum-
stance (see Savage, 1954, p. 66).
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which an obviously important prior variable
is found that systematically differs in the E
and C trials. We must adjust the estimate
¥4 and the associated significance levels just
as we would if the study were in fact a
properly randomized experiment. An ob-
vious way to adjust for such variables is to
assume subjective randomization (i.e., the
study was randomized and the observed
difference on prior variables occurred “by
chance”), and use the methods discussed in
the previous section “Considering Addi-
tional Variables” appropriate for an experi-
ment (i.e, gain scores, adjustment by a
known function, covariance adjustment).

The main problem with this approach is
that having found an important prior varia-
ble that systematically differs in the E and C
trials, we might suspect that there are other
such variables, while if the study were
randomized we might not be as suspicious of
finding these prior variables. Additionally,
the various methods of adjustment that
yield unbiased estimates given randomiza-
tion have varying biases under different
models without randomization. Even though
an unbiased estimate is not (as we have
seen) the total answer to estimating =, it
is more desirable than a badly biased esti-
mate. Recent work on methods of reducing
bias in nonrandomized studies is summarized
in Cochran and Rubin (1974). Much work
remains to be done, especially for many prior
variables and nonlinear relations between
these and Y.

In sum, with respect to variables not
explicitly controlled, a randomized study
leaves the investigator in a more comfortable
position than does a nonrandomized study.
Nevertheless, the following points remain
true for both: (a) Any adjustment is some-
what dependent upon the appropriateness
of the underlying model—if the model is
appropriate the confounding effect of the
prior variables is reduced or eliminated,
while if the model is inappropriate a con-
founding effect remains. (b) We can never
know that all causally relevant prior varia-
bles that systematically differ in the E and
C trials have been controlled. (¢) We must
be prepared to ignore irrelevant prior varia-
bles even if they systematically differ in E
and C trials, or else we can obtain any
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estimate desired by eventually finding the
“right” irrelevant prior variables.

Generalizing Results to Other Trials

For almost any study to be of interest,
the results must be generalizable to a popula-
tion of trials. Typically, nonrandomized
studies have more representative trials than
experiments since these are often conducted
in constrained environments. Thus, if the
choice is between a nonrandomized study
whose 2N trials consisted of N representative
E trials closely matched to N representative
C trials and an experiment whose 2N trials
were highly atypical, it is not clear which
we should prefer; in practice there may be a
trade-off between the reasonableness of the
assumptions of subjective random sampling
and subjective randomization (e.g., con-
sider a carefully matched nonrandomized
evaluation of existing compensatory reading
programs and an experiment having these
compensatory reading programs randomly
assigned to inmates at a penitentiary).

In a sense, all studies lie on a continuum
from irrelevant to relevant with respect to
answering a question. A poorly controlled
nonrandomized study conducted on atypical
trials is barely relevant, but a small ran-
domized study with much missing data
conducted on the same atypical trials is not
much better. Similarly, a very well-con-
trolled experiment conducted on a repre-
sentative sample of trials is very relevant,
and a very well-controlled nonrandomized
study (e.g., E and C trials matched on all
causally important variables, several control
groups each with a potentially different
bias) conducted on a representative sample
of trials is almost as good. Typically, real-
world studies fall somewhere in the middle
of this continuum with nonrandomized
studies having more representative trials
than experiments but less control over prior
variables.

SUMMARY

The basic position of this paper can be
summarized as follows: estimating the
typical causal effect of one treatment versus
another is a difficult task unless we under-
stand the actual process well enough to (a)
assign most of the variability in Y to specific
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causes and (b) ignore associated but causally
irrelevant variables. Short of such under-
standing, random sampling and randomiza-
tion help in that all sensible estimates tend
to estimate the correct quantity, but these
procedures can never completely assure us
that we are obtaining a good estimate of the
treatment effect.’

Almost never do we have a random sample
from the target population of trials, and
thus we must generally rely on the belief in
subjective random sampling, that is, there
is no important variable that differs in the
sample and the target population. Similarly,
often the only data available are observa-
tional and we must rely on the belief in
subjective randomization, that is, there is
no important variable that differs in the E
trials and C trials. With or without random
sampling or randomization, if an important
prior variable is found that systematically
differs in E and C trials or in the sample and
target population, we are faced with either
adjusting for it or not putting much faith in
our estimate. However, we cannot adjust
for any variable presented, because if we
do, any estimate can be obtained.

In both randomized and nonrandomized
studies, the investigator should think hard
about variables besides the treatment that
may causally affect Y and plan in advance
how to control for the important ones—
either by matching or adjustment or both.
When presenting the results to the reader,
it is important to indicate the extent to
which the assumptions of subjective ran-
domization and subjective random sampling
can be believed and what methods of control
have been employed.!* If a nonrandomized
study is earcfully controlled, the investigator
can reach conclusions similar to those he

“Even assuming a good estimate of the causal
effect of E versus C, there remains the problem
of determining which aspects of the treatments are
responsible for the effect. Consider, for example,
“expectancy” effects in education (Rosenthal, 1971)
and the associated problems of deciding the relative
causal effects of the content of programs and the
implementation of programs.

" Recent advice on the design and analysis of
obscrvational studies is given by Cochran in Ban-
croft (1972).

DONALD B. RUBIN

would reach in a similar experiment.!'® In
fact, if the effect of the E versus C treatment
is large enough, he will be able to detect it in
small, nonrepresentative samples and poorly
controlled studies.

Basic problems in social science research
are that causal models are not yet well
formulated, there are many possible treat-
ments, and in many cases the differential
effects of treatments appear to be quite
small. Given this situation, it seems reasona-
ble to (a) search for treatments with large
effects using well-controlled nonrandomized
studies when experiments are impractical
and (b) rely on further experimental study
for more refined estimates of the effects of
those treatments that appear to be im-
portant. The practical alternative to using
nonrandomized studies in this way is evalu-
ating many treatments by introspection
rather than by data analysis.
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