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Abstract

Access to high quality spatial data raises fundamental questions about how to select the

appropriate scale and unit of analysis. Studies that evaluate the impact of conservation

programs have used multiple scales and areal units: from 5x5 km grids; to 30m pixels; to

irregular units based on land uses or political boundaries. These choices affect the esti-

mate of program impact. The bias associated with scale and unit selection is a part of a

well-known dilemma called the modifiable areal unit problem (MAUP). We introduce this

dilemma to the literature on impact evaluation and then explore the tradeoffs made when

choosing different areal units. To illustrate the consequences of the MAUP, we begin by

examining the effect of scale selection when evaluating a protected area in Mexico using

real data. We then develop a Monte Carlo experiment that simulates a conservation inter-

vention. We find that estimates of treatment effects and variable coefficients are only accu-

rate under restrictive circumstances. Under more realistic conditions, we find biased

estimates associated with scale choices that are both too large or too small relative to the

data generating process or decision unit. In our context, the MAUP may reflect an errors in

variables problem, where imprecise measures of the independent variables will bias the

coefficient estimates toward zero. This problem may be pronounced at small scales of

analysis. Aggregation may reduce this bias for continuous variables, but aggregation

exacerbates bias when using a discrete measure of treatment. While we do not find a solu-

tion to these issues, even though treatment effects are generally underestimated. We con-

clude with suggestions on how researchers might navigate their choice of scale and aerial

unit when evaluating conservation policies.

"This porridge is too hot!" exclaimed Goldilocks.

So, she tasted the porridge from the second bowl.

"This porridge is too cold," she said.
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So, she tasted the last bowl of porridge.

"Ahhh, this porridge is just right”.

1. Introduction

Spatial data on land use or forest cover is a key ingredient for studies seeking to measure the

impact of conservation programs [1,2]. We have witnessed vast improvements in the quality of

remote sensed imagery in the last decade, and it is now common to analyze spatial data

obtained at resolutions of less than 1 m per pixel [3]. These high quality data provide research-

ers with new opportunities to monitor and quantify the impact of conservation programs such

as protected areas, payment for environmental services (PES) programs or forest management

practices.

In this paper, we examine how the choice of scale influences estimates of program impact

when evaluating conservation programs. Until now, the scale and structure of spatial data

has been taken as given [4,5] and estimates of conservation programs have used units of

analyses that range from small pixels to 5x5 km grids (Table 1). In only a few instances have

researchers examined conservation impacts at multiple scales [6,7], suggesting that for the

most part, analysts implicitly assume that choices about scale will not affect estimates of

treatment effects for conservation programs. When access to spatial data was limited, this

was the only assumption possible. However, researchers now have access to multiple data

sources at very high resolutions. For instance, the resolution of satellite imagery is now so

good, that in temperate forests, one can identify the bare ground between the trees and

through the branches, thus literally, losing sight of the forest within the trees. At least in

terms of forest cover, we have reached the maximum resolution necessary, since, for the

purposes of measuring forest change, higher resolution data will not provide better esti-

mates. In this new technological landscape, researchers will need to think critically about

the scale at which conservation decisions are made and accordingly choose the appropriate

scale and areal unit of analyses. These choices present researchers with well-known chal-

lenges related to scale, zoning, and spatial autocorrelation [8–10].

The theoretical challenges that confront researchers when making decisions about scale

and unit of analysis have been studied for decades by geographers and spatial statisticians [11–

13]. On the one hand, it is well known that spatial data is subject to a scale effect, in which the

observation of outcomes may differ at different levels of aggregation [13]. The scale effect

results from the smoothing that occurs when moving to a higher level of aggregation, and the

associated loss of heterogeneity and variation. In addition to the scale effect, the errors or bias

generated by the choice of the unit of analysis are known as the modifiable areal unit problem
(MAUP) [5,8,14]. Bias in the MAUP can result from both scale and zoning effects and their

interaction, where zoning refers to alternative groupings of data at the same scale. Although

recognized and extensively discussed in the aforementioned literatures, the errors and biases

associated with the MAUP have yet to receive the attention they deserve within conservation

science.

Spatial statisticians in the 1930s first pointed out the inaccuracies and biases associated with

analyzing a spatial data set with different aerial units and scales [13]. The concept was brought

to the fore by Gehlke and Biehl [10] even though the most cited evidence of the MAUP is

given by Openshaw and Taylor [11], who show that depending on the choice of scale and zon-

ing, the same data could generate correlation coefficients ranging from -0.99 to +0.99. In other
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early work using different aggregations of existing data, the MAUP was thought to produce

unpredictable results, with little generalizable solutions. In these earlier treatments of the

MAUP, the problem was essentially seen as one of aggregation: the true decision-making unit

was the individual, but the data were only available aggregated, such as a census block or

county [8]. In this context, the MAUP reflects the ecological fallacy in which it is erroneous to

assume that outcomes at one scale will extrapolate accurately to finer resolutions. Recently,

though, research has focused on fine scale datasets that exhibit spatial correlation, as well as

how multivariate models behave under the MAUP [5,14–16]. The literature has also moved in

the direction of Monte Carlo experiments using artificial data, to isolate the sources of errors

and biases [16].

Work on impact evaluation in conservation has been slow to account for either scale effects

or spatial dependence. While many studies that evaluate the impact of conservation programs

Table 1. Comparison of methods and scale used in studies that evaluate conservation impact. (T: # treatment units; C: # control units).

Authors Zoning Cell size (ha) Study Area

(km2)

# Obs. Imagery &

Resolution

Method Sample Spatial

Alix-Garcia et al.

2012 [28]

Grid 6 335,000 633 MODIS (250 m) Matching Yes No

Andam et al. 2008

[29]

Grid 3 30,357 15,383 Landsat TM (30 m) Matching Yes No

Baylis et al. 2015

[24]

Grid 4 3,427 85,693 Landsat TM (30 m) Matching No Yes

Blackman 2015 [30] Grid 6.25 21,000 397,376 Landsat (30 m) Matching Yes No

Börner et al 2015 [7] Grid 40,000 4,100,000 11,181 Landsat (100 m) &

MODIS (250 m)

Matching No Yes

Bruggeman et al.

2015 [31]

Grid 0.09 24,000 3,000 Landsat ETM (30 m) Matching Yes No

Busch & Grantham

2013 [32]

Grid 900 1,759,194 195,466 MODIS (250 m) OSIRIS model No No

Clements & Milner-

Gulland 2014 [33]

Grid 100 3,304 3,304 Landsat TM (30 m)

Aster (30 m)

Matching Yes No

Costedoat et al 2015

[6]

Grid 10 1,468 2,524 SPOT 5 (10 m) Matching No Yes

Ferraro & Hanauer

2014 [34]

Object: Census

Boundaries

295 (mean) 50,660 17,239 Landsat TM (30 m) Matching No No

Gaveau et al 2009

[35]

Grid 2 440,000 1,256 (T) Landsat TM (30 m) Propensity

Score Matching

Yes No

Honey-Rosés et al

2011 [17]

Object: Landscape

units

20.81 (mean)

5.44 (median)

3,432 4,263 (T+C)

425 (T)

Landsat TM (30 m) Matching No Yes

Pfaff 1999 [36] Object: County 33,000 (mean) 5,000,000 480 Landsat TM

(reclassified to 1 km2)

Regression No No

Pfaff et al. 2015 [37] Grid 0.81 156,522 20,072 (T+C)

7,775 (T)

Landsat TM (30 m) Matching Yes Yes

Sanchez-Azofeifa

et al 2007 [4]

Grid 2,500 50,100 2,021 Landsat TM (30 m) OLS No No

Shah & Baylis 2015

[38]

Grid 900 1,565,604 3,957(T)

170,899(C)

MODIS (250 m) Matching No Yes

Sills et al 2015 [39] Object: Municipality NA 15,000 NA INPE Brazilian

National Space

Agency

Synthetic

Control

No No

Sims 2010 [40] Object: Locality 8,200 (mean) 147,620 4,113 Landsat (30 m & 60

m)

OLS & IV No No

Sims & Alix-Garcia

2015 [41]

Object: Thiessen

polygons of locality

215 (mean) 335,000 59,536 Landsat TM (30 m) Matching Yes No

doi:10.1371/journal.pone.0167945.t001
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use spatial data, few account for spatial processes (exceptions include [17–20]). Deforestation

and other land use patterns are highly spatially correlated, yet limited works have sought to

control for how the conditions in neighboring areas might change the land use in the target

area. Controlling for spatial processes can substantively alter the estimated effect of conserva-

tion programs [17]. While spatial processes are not needed for the MAUP to generate biased

estimates, they do complicate the aggregation problem.

In this paper, we build on the existing insight developed by spatial statisticians in order to

assess how a researcher’s choice of scale or aerial unit may bias their estimates of program

impact, or treatment effects, when evaluating conservation programs with common statistical

methods. We make several contributions. First, we contribute to the conservation literature by

identifying the effect of the choice of scale and spatial correlation on the estimates of conserva-

tion program efficacy. Second, we contribute to the literature on the MAUP by considering

spatial processes generated at lower resolutions than the scale in which data is available to the

researcher, reflecting the detailed spatial data now available to researchers.

To illustrate the sensitivity of statistical analysis to a researchers choice in scale, we begin

with an analysis of deforestation data in a protected area in Mexico. We estimate the effect of

the protected area using a difference-in-difference (DID) framework, comparing forest cover

before and after, inside and outside the protected area. This analysis is repeated for four differ-

ent levels of aggregation: one hectare areal units, 4 hectare units, 16 hectare units and 100 hect-

are units. The results indicate that even using a relatively conservative estimation strategy,

estimates of program effectiveness consistently become less precise and increase with aggrega-

tion, growing by almost 25%.

Then, to probe why our estimates vary with scale, we develop a Monte Carlo simulation of a

conservation program and observe how estimates change at different scales relative to the data

generating process. We generate data at several scales, pixilate these data to represent satellite

imagery, and then regress these data at different levels of aggregation to explore how aggrega-

tion, disaggregation and spatial correlation affect the coefficient estimates. Under this con-

trolled environment, we can isolate the sources of bias and inefficiency by gradually

introducing spatial correlation within and between the variables. We focus on Ordinary Least

Squares (OLS) estimates, but also show similar results for difference in differences approaches

and spatial lag models.

Our results highlight the problems with using units of analysis that are either too small or

too large. When using a smaller spatial unit than the true scale of the process, unnecessary

noise is introduced in the analysis, which bias coefficient estimates toward zero, in what is

known as an error in variables problem. For example, imagine that a farmer is considering

converting forested land to seasonal agriculture, and the main criteria for selecting the forest

plot to deforest is accessibility and slope. The scale at which the farmer is making this decision

is much larger than the scale at which spatial data may be obtained. LiDAR (Light Detection

and Ranging), for example, may reveal slopes at the decimeter scale, including variation

induced by rocks and logs. These high-resolution data, while accurate, are unlikely to deter-

mine the probability of deforestation in any 1m by 1m quadrant, and therefore will only add

noise to the analysis, resulting in an attenuated estimate of the effect of slope on deforestation.

Only when slope is measured at the appropriate scale, is the relationship between slope and

deforestation likely to emerge. Although aggregation mitigates this problem, it introduces inef-

ficiency to the estimates. Aggregation can also generate an error in variables problem when

treatment, or the conservation intervention, is measured as a binary variable. As the definition

of the treated area becomes more coarse, treatment is increasingly measured with error, lead-

ing to biased estimates of treatment effect. Moreover, one cannot assume that these errors

always result in attenuated coefficient estimates. If the covariates are correlated, and they
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exhibit different levels of noise, the coefficient of the covariate measured with less error may be

overestimated. Finally, in spatial datasets, an unaccounted spatial lag process will induce an

additional bias via an omitted variable. Note that these issues arise simply from the nature of

the spatial data, and before introducing behavioral effects such as leakage.

In the next section we illustrate the challenges and errors associated with scalar mismatch

through an empirical example with real deforestation data. We then introduce the methods

used for the experimental Monte Carlo simulations, followed by results and discussion. We

end the paper with a few lessons learned and best practices.

2. Empirical Example: Examining the Impact of a Protected Area in

Mexico

We begin our paper with a brief example using real deforestation data from a protected area in

Mexico. We use this example to illustrate the range of treatment effects that one might estimate

when using the same data, but changing the scalar unit of analysis. We aim to estimate the

treatment effect of a protected area in reducing deforestation in the Monarch Butterfly Bio-

sphere Reserve. The forests of this protected area serve as winter habitat for the monarch but-

terflies (Danaus plexippus) since they provide the migratory butterfly with the unique climatic

conditions necessary for winter survival [21]. To protect this natural wonder, the Mexican gov-

ernment first established the protected area in 1986 [3].

To evaluate the effect of legal protection in reducing deforestation, we estimate a linear

panel regression with a difference-in-differences approach (also known as before-after-con-

trol-intervention or BACI). We use forest cover data generated from Landsat (30 m) taken in

1986, 1993, 2000, 2003, 2006 and 2009, where 1986 is the pre-treatment observation and the

other 5 years are post-treatment, and the protected area is the intervention, and surrounding

areas are the control [22]. We first use a discrete measure of treatment, defined as 1 if the

majority of the unit is inside the protected area and 0 otherwise (Fig 1A, 1C, 1E and 1G).

Because our areal units do not perfectly overlap the protected area, we also use a continuous

measure of treatment, which measures the percent area inside the protected area (Fig 1B, 1D,

1F and 1H).

We estimate the effect of protection on percent forest cover with parcel-level fixed effects

that capture time invariant parcel characteristics, such as slope and distance to road, and year

fixed effects to control for common shocks, such as changes in forest product prices or labor

availability. To mimic other impact evaluations of conservation policy, we also estimate the

difference between forest cover in the protected area and in neighboring parcels in 2000, as an

ex-post cross sectional analysis. Four levels of aggregation are considered: 1 hectare unit (1x1),

4 hectares (2x2), 16 hectares (4x4) and 100 hectare parcels (10x10) (Fig 1). Each hectare con-

tains approximately 9 pixels from the raw land cover data. Thus, even our smallest chosen

areal unit of 1 hectare aggregates above the pixel level of its satellite imagery. Note that in this

example, we ignore the potential for forest leakage (Tables 2 and 3).

The first two rows of Table 2 present the coefficient estimates of the treatment effect of the

protected area using the difference-in-differences approach, with the first row using a continu-

ous measure of treatment and the second row using a discrete measure. Rows 3 and 4 replicate

the same analysis but use only a cross-section of data on forest change from 2000. As one

moves from left to right, the unit of analysis increases from 1 ha to 100 ha parcels. The esti-

mated coefficients for percent forest cover increase with aggregation when a continuous mea-

sure of treatment is used. This pattern holds for both the difference-in-difference estimates

and the cross-sectional estimates. This pattern is less clear when discrete measures of treatment

are used: except at the smallest level, the estimate from the discrete measure is smaller than the
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Fig 1. Continuous versus discrete data aggregation. Treatment (blue) units at the protected area

observed at different scales (full resolution at 182 ha x 417 ha). Binary aggregation is illustrated on the left

panels and continuous aggregation on the right. (A)-(B) No aggregation. (C)-(D) 2x2 Aggregation. (E)-(F) 4x4

Aggregation. (G)-(H) 10x10 Aggregation.

doi:10.1371/journal.pone.0167945.g001
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estimate from the continuous measure, and this gap increases with aggregation. This potential

attenuation bias suggests an errors in variables problem which is exacerbated by using a dis-

crete measure. As expected, the standard errors of the estimates increase due to a shrinking

number of observations, rendering the estimates insignificant at the highest level of

aggregation.

The percent differences in the estimates are presented in Table 3. The first 4 columns list the

percent difference in the estimates of continuous versus discrete measures of treatment at the

four different levels of aggregation. The second last column gives the percent difference between

the smallest to largest aggregation in the estimates of the continuous measure of treatment, and

the last column repeats this measure for discrete treatment. As expected, the bias generated by

using a discrete measure of treatment increases with the level of aggregation, growing to 29%

and 55% for the difference-in-difference and cross-sectional estimate respectively. Notably the

distortion is worse for the cross-sectional analysis, possibly due to the smaller number of obser-

vations and the decreased number of controls. Second, the changes in estimates with aggrega-

tion are substantial. For the difference-in-difference estimates, the 100 ha level of aggregation

produces an estimate that is 24% higher than the analysis at 1 ha, and for the cross-section, this

difference is even larger, at over 60%. These differences are much smaller with discrete treat-

ment, at 4% for the difference-in-difference estimates and 3% for the cross-sectional estimates.

We believe that these smaller differences result from offsetting attenuation biases, arising from

errors in variables from using noisy data at a small scale, and a second errors in variables arising

from aggregating discrete treatment measures at the higher scales.

Table 2. Variation in treatment effects estimated with different methods and scales.

Observation size (1)

1 ha

(2)

4 ha

(3)

16 ha

(4)

100 ha

DID with parcel FE, continuous treatment 0.0805*** 0.0812*** 0.0875*** 0.0999*

(0.00684) (0.0130) (0.0244) (0.0593)

DID with parcel FE, discrete treatment 0.0805*** 0.0791*** 0.0836*** 0.0773

(0.00684) (0.0125) (0.0227) (0.0545)

Ex-post cross section, continuous treatment 0.0841*** 0.0905*** 0.102*** 0.135

(0.00990) (0.0187) (0.0351) (0.0859)

Ex-post cross section discrete, discrete treatment 0.0841*** 0.0892*** 0.0972*** 0.0869

(0.00990) (0.0181) (0.0326) (0.0796)

Year Fixed Effects yes yes yes yes

Observations for diff-in-diff 48,882 12,486 3,126 492

Observations for cross-section 8,147 2,081 521 82

Standard errors in parentheses

*** p<0.01,

** p<0.05,

* p<0.1

doi:10.1371/journal.pone.0167945.t002

Table 3. Percent difference in coefficient estimates between discrete and continuous and over aggregation.

Observation size (1)

1 ha

(2)

4 ha

(3)

16 ha

(4)

100 ha

(5)

% Difference from small to large aggregation

using continuous treatment

(6)

% Difference from small to large aggregation

using discrete treatment

diff-in-diff 0 2.65 4.67 29.24 24.10 4.14

ex-post cross section 0 1.46 4.94 55.35 60.71 3.22

doi:10.1371/journal.pone.0167945.t003
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In short, we find that the estimates of the effect of the protected area vary with the chosen

scale of analysis. Which scale is correct? One approach for choosing the ideal scale for analysis

is to select the one that matches the decision-making unit. However, often the precise deci-

sion-making unit is unknown. In the example above, using information from detailed commu-

nity forest management plans, we observe that forest management decisions are typically

made on parcels of approximately 4 ha, suggesting that might be the appropriate unit of

analysis.

At the same time, we must consider that the drivers of deforestation may not occur at one

single scale but rather at multiple scales simultaneously [8]. The same is true for most ecologi-

cal processes. Forest loss is the outcome of micro-pressures operating at fine scales–like the

farmer who removes dead trees for fuel wood–, and simultaneously the result of pressures

operating at large scales–like the volcanic activity that left traces of fertile soil on a landscape.

This problem is compounded when multiple decision-making agents operate at multiple

scales. Selecting a scale at which resources are traditionally managed, such as property bound-

aries, may be a useful starting point. But even then, this scale may hide tradeoffs and dynamics

within the property boundary itself, especially if the area is managed collectively and there are

intra community tradeoffs that prioritize the protection of some community forests over oth-

ers [23]. In other words, the process that our model attempts to explain (deforestation) is the

combined outcome of explanatory processes (independent variables) operating at different

scales. And even closely related processes may have vastly different scales. For example, defor-

estation decisions may likely be made at a larger scale than reforestation. Thus, the scale issue

is not merely one of limiting aggregation, but finding the appropriate unit at which to model

the desired phenomenon.

3. Methods and Data

To study how choices pertaining to scale and areal units influence estimates of conservation

program effectiveness, we employ a set of Monte Carlo simulations to generate and analyze

data at multiple scales. In contrast to the previous literature that uses simulated data to explore

the effect of aggregation on correlations [5, 14], in this paper we analyze the sources of the

MAUP when data are both aggregated and disaggregated from the level of the true data gener-

ating process. We feel that this approach can provide more insight to the conservation litera-

ture and more accurately reflects the reality of researchers using increasingly fine-grained

spatial data. We study the impacts of the choice of scale, coupled with misspecification of the

spatial unit of observation, when estimating treatment impacts. Given the complex relations

that exist in real datasets, we focus on simulated data to control its properties and be able to

compare how different attributes of the data may lead to biased and/or imprecisely estimated

coefficients.

3.1. Basic Setup

Consider a forest manager who determines what areas to log at a one hectare plot level, based

on plot-level characteristics. Denote this scale as the “true level”. The researcher, however, has

data available at a finer resolution and has to decide how to aggregate them for the analysis.

Our approach allows us to capture the reality of researchers who aggregate up to their chosen

unit of analysis from pixel level detail in satellite imagery or other remote sensed data. There-

fore, we assume that these “observed data” are always at the pixel level, a 1x1 cell laid in a regu-

lar lattice of dimension 120x120 (n = 14,400).

The observed data emulate the characteristic ‘noise’ embedded in fine-resolution satellite

images. In them, when determining values at the pixel level, some information, such as
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elevation, is generated either by an implicit form of kriging, or by direct observation. Other

imagery interpretation groups land cover categories to contiguous collections of pixels, and

assigns a homogenous land use cover to all pixels within this patch. Note that this process

smoothes away heterogeneity, where this heterogeneity may either reflect true variation in the

dependent variable or be spurious. This same smoothing does not necessarily occur for other

independent variables.

For the simulation (Fig 2), observed data are derived from the spatial process at its true

level disaggregated to the pixel level via a procedure that adds noise. Hence, the only instance

in which ‘observed’ are equal to ‘true’ data (i.e., they do not carry any extra noise) is when the

simulated spatial process is at the pixel level. In formal terms, for true levels at lower resolution

than the pixel level, variables in the observed data are generated by drawing from a normal dis-

tribution with mean equals the true variable and a pre-specified variance s2
d (Fig 3). Notice

that by changing s2
d we can simulate more or less information loss due to (dis)aggregation by

imposing more spatial heterogeneity at the pixel level.

This procedure implies that the researcher never observes the actual spatial process, only a

pixilated version thereof, where even if the researcher aggregates the observed data to the true

level, it will not exactly match the true data. Even if the boundaries of the decision-making

unit perfectly corresponded to the pixel grid, one might expect to see more heterogeneity at

the pixel level than at a more aggregated level of the true DGP. If the true data generating pro-

cess occurs at the pixel level, this heterogeneity may reflect the ‘truth’, whereas if the true deci-

sion-making process is at a higher level, this heterogeneity may merely be added ‘noise.’

For simplicity, we assume the researcher can choose between six possible resolutions

besides the pixel level (1x1 resolution). We average the observed pixel data into groups of: 4

pixels (2x2 resolution), 16 pixels (4x4 resolution), 25 pixels (5x5 resolution), 36 pixels (6x6 res-

olution), 100 pixels (10x10 resolution) and 144 pixels (12x12 resolution). The scale used for

analysis is assumed to be the choice of the researcher.

3.2. Data Generating Process

To understand the sources of the MAUP in studies that estimate treatment effects for forest

conservation programs, we generate spatial processes with various degrees of complexity by

altering the coefficients and spatial relations in the following generic model:

Y ¼ aþ bX þ rWY þ gT þ ε

where Y is a continuous variable that represents the outcome of interest, X is an independent

variable that affects outcome, and T is a dummy for treated cells, such as a conservation pro-

gram. We let α = β = 1, and set the coefficient on treatment, γ = 0.5. Because of the high degree

of spatial correlation in many land-use processes, we allow for the addition of a spatial lag pro-

cess in our simulated data. Thus we assume that the outcome of interest, Y, may be a function

of outcomes in contiguous parcels, where those contiguous parcels are identified through a

spatial weights matrix W. The dependent variable Y can be determined exclusively by X and T

(ρ = 0) or complemented by a spatial lag (ρ> 0). The spatial lag could result if deforestation in

one cell increases the probability of deforestation in the neighboring cells, over and above the

effect of independent variables. The remaining error is normally distributed: ε ~ N(0, 1).

Treatment is represented by an indicator variable, where Ti = 1 implies that the unit i is

treated. During the aggregation or disaggregation process, a unit is assigned to treatment if the

majority of the pixels in the unit are treated. We allocate treatment by (1) clustering treatment

cells in the Eastern segment of the grid (as in [16]) (Fig 4A); (2) allocating treatment cells ran-

domly (Fig 4B), or (3) correlating treatment with X, in which the largest X values are treated
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Fig 2. Monte Carlo Simulation Flow Chart.

doi:10.1371/journal.pone.0167945.g002
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(Fig 4C). The first scenario of clustered treatment cells resembles a wildlife preserve that is allo-

cated over a contiguous space. The second scenario might reflect an increase in enforcement

of forest use regulations where that increased enforcement is distributed randomly across

space. The third scenario reflects a conservation program targeting species habitat, such as

areas over a certain elevation. This last scenario provides us with a treatment allocation proce-

dure that lies between clustered and random.

Given that factors that affect land use outcomes such as slope, elevation or soil type them-

selves may follow a spatial process, we also allow the independent variable X to both be ran-

dom (X ~ Unif(0, 5)), or spatially correlated in two ways: X = (1 –πW)K or X = W2K, with K ~

Unif(0, 5). Therefore, we study two types of spatial dependence in the dependent variable, X: a

spatial lag (π = 0.9) and a spatial dependence on second order neighbors (X = W2K). A spatially

dependent X might result if the independent variable is generated by kriging, or simply if it is a

continuous measure over space such as soil quality or slope. The two spatial processes used to

generate X were chosen to reflect the impact of using an aggregation procedure that follows

the spatial grid pattern (first case) or not (second case). The latter is closer to reality where the

Fig 3. Aggregation and Disaggregation Procedure. Example of a spatial process with true level = 4x4

resolution.

doi:10.1371/journal.pone.0167945.g003

Fig 4. Three possible treatment scenarios. Treatment cells are identified with a red border, while the value of the independent variable X is

represented by the cell color gradient (higher values for darker cells).

doi:10.1371/journal.pone.0167945.g004
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spatial process is usually unknown and a standard aggregation procedure is used, introducing

zoning effects. In real data, one might expect spatial processes present in both dependent and

independent variables.

3.3. Simulations

To isolate the sources of biases/inefficiencies in estimation, we generate data from five models

in increasing level of complexity. A Monte Carlo with 1,000 simulations is performed for each

model and resolution. The results of aggregating the observed data to different resolutions are

illustrated by mapping the estimated coefficients and their standard errors against their values

at the true level. In all figures that follow, the vertical axis represents the magnitudes of the

coefficient estimates and the horizontal axis represents the resolution chosen (Fig 5). Thus, it

ranges from the pixel level, up to the highest aggregation level of 12x12 (the lowest resolution).

The vertical dashed line denotes the true level, which in the case of Fig 5 case is a 6x6 resolu-

tion. The top green line represents the coefficient estimate on X and the grey bounds represent

the standard errors at each level of aggregation. The blue line represents the estimated coeffi-

cient on treatment, and again the grey area represents the standard errors of the estimate at

each level of aggregation.

4. Results

A full explanation and detailed results for all models can be found in the Supporting Informa-

tion. Here we focus on the evidence behind a few general findings:

1. Coefficient estimates may be imprecise when the analysis is at too large a scale (Model 1);

2. Coefficient estimates may be biased when analysis is done at too small a scale, and this effect

is exacerbated when a spatially-correlated X is present (bias is essentially resulting from an

Fig 5. Sample chart and conversion table for the horizontal axis.

doi:10.1371/journal.pone.0167945.g005
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errors in variables problem, which leads to attenuated estimates of both β and γ) (Models 1

and 4);

3. The aggregation problem can generate bias when one uses a discrete measure of treatment

(Model 3);

4. When treatment is correlated with other covariates, as is often the case in conservation, esti-

mates of the coefficients may be biased either upward or downward, depending on which

variable becomes less precisely, treatment or X (Model 4);

5. Even an analysis performed at the level of the data generating process (DGP) may not gen-

erate consistent results (Models 2 and 4);

6. Last, a spatial lag will exacerbate bias if unaccounted for (Model 5).

In sum, efficiency issues arise when an analysis is conducted at a coarse scale due to a

diminished number of observations. But bias may arise when using too small or too large a

scale from an error in variables issue caused either by noise being added to the data when the

unit is too small, or by the spatial structure of the variables being distorted when the unit is too

large. Omitted variables enhance the previous bias. In the next subsections, we detail the key

sources of the aforementioned issues, starting with a simple data process and OLS estimates

until complex data and spatial econometric techniques.

4.1. Model 1: OLS with random covariates

To demonstrate the problem of using units of analysis that are too large, we show results from

a simple OLS estimate in which treatment is contiguous (clustered) and the independent vari-

able is random. We start by assuming the true level as the pixel level, i.e., “observed data” is

equal to “true data” (there is no extra noise). Under these assumptions, our results are unbi-

ased for both X and T regardless of the data’s aggregation level (Fig 6A).

This first model, although improbable in the conservation context, represents the standard

setting for studying the MAUP in the literature. We reproduce the results found in several

Fig 6. OLS results (X random, T contiguous, ρ = 0). (A) True level = 1x1 resolution (pixel level). (B) True level = 6x6 resolution.

doi:10.1371/journal.pone.0167945.g006
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earlier papers that under specific conditions, where we are able to accurately identify the coef-

ficients on T and X [5, 14]. However, note that when the analysis is performed at higher aggre-

gation levels, the standard errors increase monotonically due to the efficiency loss from the

reduced variability and lower number of observations. Thus, using a large unit of aggregation

reduces the efficiency of the estimates.

Next, we repeat the exercise assuming the true level at a higher aggregation, i.e., the

“observed data” is different from the “true data”. We now have a pixel level dataset with

‘noise’. Estimates of the treatment effect (γ) remain unbiased because treatment units are spa-

tially clustered, and thus different levels of aggregation do not affect its measure. Estimates of

the coefficient on X, however, are underestimated when our chosen scale of analysis is smaller

than the data generating process. This is because at a finer resolution, the estimate is sensitive

to the noise added in the data, and the estimate moves toward zero as expected with an error in
variables problem. In contrast, aggregation attenuates this bias by smoothing the additional

variability, so only an efficiency loss remains when the analysis is performed at higher levels of

aggregations (Fig 6B).

4.2. Model 2: OLS with spatially correlated X

When we introduce spatial correlation to the independent variable X, we find that even run-

ning the regression at the true level, the estimates of β are biased, distinct from Model 1 which

had an aspatial random X (compare Fig 7A versus Fig 6B). When X is random, the added

noise creates imprecision in the variable’s value but its overall distributional structure is main-

tained, since it is random. Conversely, when X is spatially correlated, besides the previous

effect the added noise impacts X’ structure (spatial process) exacerbating its imprecision. As

we aggregate, however, the spatial component of X becomes less important for the estimation

(since there are fewer observations), leading to a convergence towards its true value.

Note that the bias in the estimates of β are driven by the added ‘noise’ in the data due to dis-

aggregation. This effect is more clearly seen when we increase the amount of heterogeneity in

Fig 7. OLS Results (T contiguous, ρ = 0). (A) X = W2K and true level = 6x6 resolution. (B) X = (1 –πW)K and true level = 6x6 resolution.

doi:10.1371/journal.pone.0167945.g007
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the disaggregation procedure, thus introducing more noise, leading to an increased bias in the

estimate of β (S1 Fig).

As in Model 1, aggregation may smooth away some of the noise if it follows the underlying

spatial process of the variable. In our case, the noise is not completely mitigated because aggre-

gation did not follow the spatial process in X (Fig 7A). In comparison, Fig 7B shows the case in

which our aggregation procedure more closely follows the spatial pattern of X. However, even

with an inadequate aggregation procedure, at higher levels of aggregation, the errors in vari-

ables phenomenon is reduced. Finally, as before, aggregation increases the standard errors.

4.3. Model 3: OLS with Discrete Measures of (Random) Treatment

The previous models illustrate that while too much aggregation can lead to inefficient esti-

mates, it might help reduce bias in the case of a spatially correlated X. Next, we show that with

discrete measures of treatment, common in the conservation literature [1], aggregation can

also create bias. To observe this effect, consider the simple scenario when treatment is ran-

domly distributed, and both X and T are random. While this situation does not arise fre-

quently in a conservation setting, one might imagine the situation where one wants to observe

the effect of varying levels of enforcement, and that enforcement is distributed randomly over

space. Similarly, one might imagine a random set of privately-owned parcels being contributed

to a land trust.

Coefficient estimates on X and T are unbiased when estimated at the true level (Fig 8A and

8B). At higher levels of aggregation, the estimate of the treatment effect is attenuated because

of the increased noise in its measure. This result again flows from the errors in variables prob-

lem. Because T is a discrete variable, at higher levels of aggregation, treated pixels are com-

bined with untreated pixels and are allocated either to treatment or not, adding error to the

true measure of T. If instead one uses the percent of pixels that are treated as a continuous

measure of treatment, this attenuation bias disappears (Fig 8C).

At lower levels of aggregation, the estimate of the treatment effect is unbiased when the true

level is perfectly divisible by the unit of analysis. Thus, if the true level is at the 4x4 resolution

and the analysis is at the 2x2 resolution, then the treatment estimate is unbiased. If the true

level is not perfectly divisible by the unit of analysis, the allocation of treatment to parcels is

Fig 8. OLS Results (X random, T random, ρ = 0). (A) True level = 1x1 resolution (pixel level) and discrete aggregation of treatment. (B) True level = 6x6

resolution and discrete aggregation of treatment. (C) True level = 6x6 resolution and continuous aggregation of treatment.

doi:10.1371/journal.pone.0167945.g008
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imprecise. We essentially face the same problem as we do with aggregation, that the noise in

the measure of T biases the estimate of the treatment toward zero. This phenomenon is related

to the zoning effect, since our unit measure does not perfectly overlap the true data. Note that

imperfect allocation to treatment, even at the pixel level, is highly likely in practice since the

scenario of perfect treatment allocation would be rare in the real world. Thus, one would

expect some attenuation bias when using discrete measures of treatment. Also, at lower levels

of aggregation, as in Model 1, we observe that the estimate of the coefficient on X is attenuated

towards zero.

4.4. Model 4: OLS with Correlated Covariates

We next test the accuracy of our estimates when T is a function of X. We emulate this relation-

ship by allocating treatment to those parcels with high values of X, where X is spatially corre-

lated. This situation most closely resembles how many protected areas are created since

criteria for inclusion in a protected area usually include spatially correlated characteristics

such as ecosystem type or elevation.

Now, we retain the same problem with X as in the previous models in that imprecise mea-

sures of X at levels of aggregation lower than the true level result in bias. However, biases of

the coefficients on treatment and X interact. Two countervailing forces act to bias the coeffi-

cient on X. The first is the same as in Models 1 and 2: errors at lower levels of aggregation

drive the coefficient estimate toward zero. The other bias concerns the misestimation of the

coefficient on T, which is correlated with X. The underestimation of the coefficient on T

means that some of the variation in outcome truly associated with T is incorrectly attributed to

X, resulting in overestimation of the coefficient on X. This result differs from what we

observed in the second scenario where this interaction does not occur. The degree of overesti-

mation is worse when the bias on γ is also worse, as can be seen at higher levels of aggregation

when the true level is at the pixel level (Fig 9A and 9B). Thus, the larger the correlation

between X and T, a discrete variable which is increasingly distorted with aggregation, the more

that aggregation biases is the estimates of the coefficient on X.

Fig 9. OLS Results (X correlated, T dependent on X, ρ = 0). (A) True level = 1x1 resolution (pixel level). (B) True level = 6x6 resolution.

doi:10.1371/journal.pone.0167945.g009
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Unlike earlier models in which the coefficient on T was always underestimated, the correla-

tion between X and T implies that the treatment estimates may be either under or overesti-

mated. The bias on the estimated treatment effect goes from positive (or zero) to negative as

we increase the level of aggregation. The degree of negative bias is worse at higher levels of

aggregation for the same reason as discussed in Model 3: as treated parcels are aggregated with

some untreated parcels, the allocation to treatment is committed with error, inducing an error

in variables problem, resulting in an increasingly attenuated coefficient estimate. At low levels

of aggregation, the measure of T is relatively precise while the measure of X is imprecise,

implying that more explanatory power is levied on T, resulting in an overestimate of the treat-

ment effect. At higher levels of aggregation, X is now measured more precisely than T and this

situation reverses, resulting in an underestimation of the treatment effect.

Our model produces unbiased estimates at the true level when the true level and the analysis

occur at the pixel level (Fig 9A) but produces biased estimates above the pixel level (Fig 9B)

even if our analysis uses the same scale as the true data generating process. As above, this is a

result of the noise added to the “observed data” at the pixel level, which then gets transferred

with aggregation. This bias is evident in that at the vertical dashed line in Fig 9B, the estimated

coefficient on T coefficient is around 0.75 (as compared with a true coefficient of 0.5) and the

estimated coefficient on X is around 0.6 (in contrast to a true value of 1).

4.5. Model 5: OLS with Spatial Lag

Finally, we revisit the above models with an added spatial lag in the dependent variable Y. At

ρ = 0.5, the true marginal effect of T should be 1 and of X should be 2. With clustered treat-

ment (Fig 4A), the primary difference from the scenario without a spatial lag in Y is that the

estimated treatment effect is slightly biased downward from the true marginal effect of 1. With

other scenarios, we essentially observe the same problems as without the spatial lag in Y, except

that even at the true level, the estimated coefficients are not equal to the marginal effects, and

move further from those marginal effects as spatial correlation increases. This result is

expected since we essentially introduce an omitted variable bias with the spatial lag. Moreover,

the addition of a spatial lag to spatially autocorrelated covariates induces even more bias rela-

tive to the case with no spatial lag in Y. Thus, with the spatial lag in Y, one obtains biased esti-

mates even at the appropriate level of aggregation. These effects are demonstrated in S3 Fig.

4.6. Models 1–5 using Different Estimation Strategies

Spatial Two-Stages Least Squares (STSLS). A few authors have used a spatially-lagged

regression to estimate the effect of conservation programs when they suspect that the outcome

follows a spatial-lag process [17,24]. In one form of this regression, the spatial lagged values of

Y are instrumented using spatially lagged values of the independent variables. Using the Spatial

Two-Stages Least Squares (STSLS) approach, we attempt to solve the omitted variable issue. By

comparing Fig 10A (OLS) and Fig 10B (STSLS), the omitted variable bias is well mitigated at

and below the true level. Nonetheless, at higher levels of aggregation, although attenuated, the

bias is still substantial (Fig 10B and 10C). This bias results from the aggregation process that

distorts the structure of the spatial process in Y, so that the spatial weights matrix does not

accurately reflect the true spatial process of Y, reducing the explanatory power of the lagged Y

covariate. Notice that this phenomenon is similar to what occurs to the estimates on discrete

treatment and spatially correlated X during aggregation.

Difference-in-Difference. Another common technique in the conservation literature is

the use of difference-in-differences approach with panel data to estimate the impact of conser-

vation programs [25]. To study the impact of scale on difference-in-difference estimations, we

Selecting Scale when Evaluating Conservation Programs

PLOS ONE | DOI:10.1371/journal.pone.0167945 December 22, 2016 17 / 24



generate a panel dataset of the form:

Yit ¼ b0 þ b1Xit þ rWYit þ gT þ vit

vit ¼ εi þ εt; εi � Nð0; 1Þ; εt¼1 � Nð0; 1Þ; εt¼2 � Nð1; 0:5Þ

As with the OLS analysis, estimates are unbiased at the true level but changes in scale induce

bias while standard errors increase with aggregation (Fig 11C). Greater spatial heterogeneity at

lower aggregation levels merely increases the standard errors.

By imposing a spatial process in the dependent variable, we observe an increasing bias in

the estimated treatment coefficient at the true level. However, as the spatial dependence

increases, it tends to smooth out this pattern (Fig 11B; also, Fig 11A shows results with no spa-

tial lag, and the spatial lag increases as one moves right). Standard errors tend to increase with

increasing spatial dependence. If treatment is clustered, constant bias is observed. The exis-

tence of spatial autocorrelation in X increases the amount of bias induced (S7 Fig).

Do alternative estimation methods partially solve the MAUP? Although techniques

other than OLS can mitigate some dimension of bias in the MAUP scale effect, they cannot

fully eliminate the issues. However, between OLS, DID and STLS, STLS mitigates the most bias

as it solves the omitted variable issue and counterbalances the error in variables bias (Fig 12).

5. Discussion

In this paper we examine how choices of scale impact estimates of treatment effects when eval-

uating conservation programs designed to protect land cover. We take away several lessons.

First, as expected, aggregation generates efficiency loss. When all variables are continuous and

randomly generated, and there are no spatial processes nor correlation of covariates, then

aggregation generates efficiency loss, but not bias. This result is highlighted in previous litera-

ture on the MAUP [e.g., 5, 14]. Aggregation can also generate bias when it combines treated

and untreated areas, making the measure of treatment less precise and biasing estimates

towards zero.

Second, perhaps more surprisingly, we find that selecting a scale that is too small can be

problematic. When we examine a phenomenon at a finer resolution than the relevant scale,

Fig 10. OLS versus STSLS results (true level = 6x6 resolution). (A) OLS result (X correlated, T = f(X), ρ = 0.9). (B) STSLS result (X correlated, T = f

(X), ρ = 0.9). (C) OLS result (X correlated, T = f(X), ρ = 0).

doi:10.1371/journal.pone.0167945.g010
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Fig 11. Difference-in-Difference results (X and T random and true level = 6x6 resolution). (A) ρ = 0. (B) ρ = 0.5. (C) ρ = 0.9.

doi:10.1371/journal.pone.0167945.g011

Fig 12. Comparison of different estimation methods (X correlated, T dependent on X, ρ = 0.9). OLS (circles), STSLS (squares), DID (triangles).

True level = 6x6 resolution, with 1,000 simulations.

doi:10.1371/journal.pone.0167945.g012
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the noise introduced in the covariates generates an error in variables bias, which is carried

throughout the different levels of aggregation. Aggregation tends to mitigate the bias driven by

errors in variables as it smoothes out the noise. However, this reduction in error only holds for

continuous variables. Discrete variables and spatial lags introduce another source of error in

variables bias as aggregation distorts their spatial structure. Hence, we show that the MAUP

creates both bias and inefficiency in the estimates. This finding differs from the previous litera-

ture: past research examining efficiency problems has focused exclusively on aggregation, not

imprecision generated from disaggregation.

In sum, we show that an areal unit that is too big can be a problem and an areal unit that is

too small can also be a problem. What scale might Goldilocks’ call “just right”? Ideally, one

would like to choose a unit of observation that corresponds with the scale that determines the

variable of interest. As noted earlier, this choice is difficult because the data generating process

that drives the dependent variable may not be readily apparent or may occur at multiple scales

simultaneously.

Perhaps most concerning, even if one can identify the scale at which the data generating

process occurs, and one has a well-specified statistical model, scale may still be a problem. If

two variables are highly correlated but the error in variables affect their precision differently,

we observe increasing bias in the more precise variable as OLS compensates the loss in expla-

nation power of the other. In this case, choosing the unit of analysis at the appropriate scale

will not be sufficient to eliminate bias. Furthermore, the bias may overestimate or underesti-

mate the treatment effect. Thus, even a scalar choice that is ‘just right’ can produce wrong esti-

mates. Therefore researchers should carefully consider how treatment may correlate with X

variables, and test sensitivity to this problem.

In short, even with relatively simple simulated spatial data, we find that the MAUP can gen-

erate a complex set of biases. Spatial processes further complicate the issue. By ignoring an

existing spatial lag process, we introduce another layer of bias on top of the previous ones

driven by omitted variables.

Many alternative estimation methods have been used to precisely estimate treatment of

conservation programs. We show that biases persist throughout multiple methods, including

using a difference-in-difference approach with fixed effects although, the spatial two stages

least squares seems a promising alternative to mitigate some of the estimation issues for

treatment.

In most spatial datasets used in conservation, land use or other data from satellite imagery,

researches should expect to encounter the spatial correlations and other issues described

above. These results are a cautionary tale for anyone using satellite imagery or other spatial

data, especially since these challenges cannot be addressed with existing methods. Neverthe-

less, we offer a few possible best practices and questions to consider when deciding the appro-

priate scale for undertaking this analysis.

First, the key challenge for researchers is to choose the relevant scale for the process being

modeled. Regardless of the precision available for explanatory variables, researchers should

prioritize the relevant scale for the dependent variable. High resolution data may be useful in

observing phenomenon in great detail, but researchers should not assume more resolution is

always better, because the highest level of resolution is not necessarily the appropriate unit of

analysis. Understanding how much to aggregate high resolution data is crucial to generate

unbiased results. Dealing with the problem of working at too fine a resolution is relatively new

for the field. Our results show that selecting an areal unit that is too small can be equally or

more problematic than scales that are too big. Until now, most of the concern has been about

overcoming the ecological fallacy and dealing with data that are too coarse. We find that with

new higher resolution data, researchers must devote more time to thinking through the most

Selecting Scale when Evaluating Conservation Programs

PLOS ONE | DOI:10.1371/journal.pone.0167945 December 22, 2016 20 / 24



appropriate scale and unit of analysis for their study site, conservation practice and the variable

being modeled. When feasible, one would ideally conduct the analysis at multiple scales to test

for bias [7].

Intermediate scales may most accurately explain land use changes in deforestation models,

while reforestation models may occur at a smaller scale. These intermediate scales could poten-

tially be at a sub-parcel level, but not fully exploit the 1 m or sub meter spatial data increasingly

available. When reviewing the scale used by research in the existing literature on deforestation,

we sense that often there is room for finer scale resolutions to be used to improve the analysis,

however we should not assume that smallest resolution available will provide the most accurate

results. Obtaining data at a smaller pixel size is unambiguously beneficial in that one can

always aggregate up to larger units. At the same time, having obtained data at a finer resolution

does not mean one should conduct the analysis using a smaller analytical unit. The use of a

smaller unit of analysis is important to avoid combining different land uses, and property own-

ers and treatment areas in the same areal unit, however pixel level analysis is likely to generate

noise that will distort the results.

Second, researchers should examine the degree and nature of the spatial correlation among

their variables to determine how errors in one variable might affect the estimates of the effect

of the others. We observed that when independent variables (X) are spatially correlated to

treatment, all of the explanatory power is attributed to one or the other, causing extreme over

and underestimates.

Third, we would advise future research to use continuous rather than discrete measures of

treatment for each areal unit (i.e., percent protected instead of protected versus not protected)

Similarly, discrete measures of outcomes (forest versus not forest) are likely to induce inaccu-

racy, which increases at higher levels of aggregation. Using a continuous measure of treatment

mitigates against the increased problem of errors in variables associated with aggregation.

Adopting continuous measures of treatment and outcomes is an easy step researchers can take

to protect themselves from the problems discussed above.

Last, this research also suggests that the conservation literature may benefit from the inte-

gration of lessons developed by hierarchical models that have integrated processes operating at

multiple scales [26].

Perhaps most importantly, our results suggest a possible direction for future research that

could deliver some simple solutions. Future work includes developing a method for determin-

ing bounds on estimates that take aggregation and spatial correlation into account, and the

development of diagnostic tests to determine the degree to which these issues may be problem-

atic. Such methodological progress will be essential to mainstream impact evaluation in nature

conservation [27].

Supporting Information

S1 Fig. Sensitivity analysis (X correlated, T contiguous, ρ = 0). True level = 6x6 resolution.

(A) Disaggregation using s2
d ¼ 0:01. (B) Disaggregation using s2

d ¼ 1. (C) Disaggregation

using s2
d ¼ 5.

(TIF)

S2 Fig. OLS Results (X correlated, ρ = 0). (A) T = Contiguous and true level = 6x6 resolution.

(B) T = Random and true level = 6x6 resolution.

(TIF)

S3 Fig. OLS results with different spatial lags and true level = 6x6 resolution. (A) X corre-

lated, T contiguous, ρ = 0.5. (B) X correlated, T contiguous, ρ = 0.9. (C) X random, T random,
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ρ = 0.5. (D) X random, T random, ρ = 0.9. (E) X correlated, T = f(X), ρ = 0.5. (F) X correlated,

T = f(X), ρ = 0.9.

(TIF)

S4 Fig. Effects of additional complexity in the data on OLS results (true level = 6x6 resolu-

tion). (A) Model 1: No Noise (Y random, X random, T contiguous). (B) Model 1b: Noisy

Dataset (Y random, X random, T contiguous). (C) Model 2: Spatial Process on X (Y random,

X s.a., T contiguous). (D) Model 3: Discrete Aggregation (Y random, X random, T random).

(E) Model 3b: Binary Aggregation (Y random, X s.a., T random). (F) Model 4: Covariate Cor-

relation (Y random, X s.a., T = f(X)). (G) Model 5: Spatial Lag (Y s.a., X s.a., T = f(X)).

(TIF)

S5 Fig. Summary of Estimated Coefficient on X from OLS Results. True level = 6x6 resolu-

tion.

(TIF)

S6 Fig. Summary of Estimated Coefficient on T from OLS Results. True level = 6x6 resolu-

tion.

(TIF)

S7 Fig. Difference-in-Difference results when X correlated, T = f(X) and true level = 6x6

resolution. (A) ρ = 0.5. (B) ρ = 0.9.

(TIF)
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